OPTI 280: Computer Programming Workshop Syllabus

Instructors
Professor Stanley Pau, College of Optical Sciences, Office Rm 427, Lab Rm 463
Email: spau@optics.arizona.edu

Office Hours: TBA

Schedule
Lecture, Monday 1:00pm to 2:15pm, Rm OPTI 307

Teaching Assistant
Kyle Taylor, Email: ktaylor@optics.arizona.edu
Office Hours: TBA

Course Objectives
To teach students the basic concepts of computer programming and how scientific or engineering problems can be translated into working computer programs. Students will also be taught some elementary concepts of statistical analysis.

Upon successful completion of this course, each student should:
- be able to use MATLAB to perform complex scientific calculations, such as Fourier transform, integration, differential equation, matrix
- become familiar with rudimentary programming techniques
- be proficient with data handling and analysis, using a computer
- be able to apply numerical analysis to solve problems

Course Description
MATLAB is used as the vehicle for the computer programming assignments in numerical and symbolic computing. Basic concepts of computer programming and control structures will be discussed and practiced by writing and debugging computer programs that do numerical calculations and symbolic mathematics, that create graphics and figures, and that manipulate vectors and matrices.

The concepts will be illustrated with a variety of programming assignments involving examples from optics and other areas of science and engineering. Numerical techniques, including numerical differentiation and integration, solution of differential equations, data import and export, error analysis, and curve fitting, will be illustrated in the assignments.

Grading
no midterm or final
homework 65%
in-class quizzes 35%

Each assignment is worth 100 points, is due a week after it is assigned and is to be submitted in class. Assignments that are handed in late will be penalized 15 points per week.

Spring 2012
Textbooks and Software
Students are encouraged to purchase the student version of MATLAB and use it on their own computer. A version of MATLAB is available for downloading at https://sitelicense.arizona.edu/matlab/.

Class Notes – Opti 280 MatLab Tutorial, available at EES Copy Center, Harvill Bldg., Rm. 137.

Programming in Matlab, Marc Herniter, Brooks/Cole, 2001

Supplements and additional materials are available at class website, which will be updated periodically during the semester: http://d2l.arizona.edu (use your NetID to login).

Course Outline
- Program statements, variables, operators, functions, and input/output
- Program structure, computer program debugging
- Vector variables, creating plots and graphs
- Relational operators, if…end structures, and for loops
- Switch structures and while loops
- Elementary statistical analysis and histograms
- Error propagation and statistical correlation
- Data import and export, and curve fitting
- Computer-aided symbolic algebra, integration, and differentiation
- Numerical differentiation, round-off errors and numerical precision
- Numerical integration
- Numerical solution of differential equations
- Numerical Fourier transform
- Graphics and images

Course policies
It is very important to attend all lecture recitation sessions, as what is discussed provides the necessary background for the weekly assignment. If you must be absent, it is your responsibility to obtain and review the information you missed. Periodic quizzes will be given to help you gauge your progress in learning the material. You should expect to have about 6 quizzes this semester. There is no make-up for quiz. If you missed the quiz, you get a zero.

Cell phones and pagers must be off or silent during lectures. If you must leave the room during lecture, please do so discreetly as not to disturb other people.

Spring 2012
Additional Information

Academic Integrity

According to the Arizona Code of Academic Integrity (http://dos.web.arizona.edu/uapolicies/cai2.html), “Integrity is expected of every student in all academic work. The guiding principle of academic integrity is that a student’s submitted work must be the student’s own.” Unless otherwise noted by the instructor, work for all assignments in this course must be conducted independently by each student. CO-AUTHORED WORK OF ANY KIND IS UNACCEPTABLE. Misappropriation of exams before or after they are given will be considered academics misconduct.

Misconduct of any kind will be prosecuted and may result in any or all of the following:
* Reduction of grade
* Failing grade
* Referral to the Dean of Students for consideration of additional penalty, i.e. notation on a student's transcript re. academic integrity violation, etc.

Students with a Learning Disability

If a student is registered with the Disability Resource Center, he/she must submit appropriate documentation to the instructor if he/she is requesting reasonable accommodations. (http://drc.arizona.edu/).

References

[1] Class notes are written by Prof. R. L. Shoemaker.
Computer Programming Workshop
OPTI 280, Spring 2012

Week 1: 9 Jan. 2012
No lecture, class begins on Jan. 11, 2012

No lecture, Martin Luther King Jr. Holiday, Jan. 16

Lecture 1: MATLAB, variables, functions, fprintf, Assignment 1

Week 4: 30 Jan. 2012
Lecture 2: Vectors, Plots & Graphs, Debug, Assignment 2

Lecture 3: Program control flow, IF END, FOR loops, Matrix, Assignment 3, Quiz 1

Lecture 4: Program development, SWITCH, WHILE, Assignment 4

Week 7: 20 Feb. 2012
Lecture 5: Matrix and Vectors, Assignment 5

Week 8: 27 Feb. 2012
Lecture 6: File I/O, Basic statistics, Assignment 6, Quiz 2

Week 9: 5 Mar. 2012
7 March - LAST DAY TO DROP COURSE WITH A "W" (if passing)
Lecture 7: More statistics, Propagation of errors, Assignment 7

Week 10: 12 Mar. 2012
No lecture: Spring recess, Mar. 10 to Mar. 18

Week 11: 19 Mar. 2012
Lecture 8: Curve fittings, Symbolic math, Assignment 8, Quiz 3

Week 12: 26 Mar. 2012
Lecture 9: System of linear equations, Assignment 9, Quiz 4

Week 13: 2 April 2012
Lecture 10: MATLAB functions, Numerical integration, Assignment 10

Week 14: 9 April 2012
Lecture 11: Numerical solutions of differential equations, Assignment 11, Quiz 5

Spring 2012
Week 15: 16 April 2012
Lecture 12: Fourier transform I, Assignment 12

Week 17: 23 April 2012
Lecture 13: Fourier transform II, Assignment 13, Quiz 6

Week 18: 30 April 2012
Lecture 14: Graphics and Images, Course Evaluation
Last day of class, Wed., May, 2