OPTI 280: Computer Programming Workshop Syllabus

Instructors
Professor Stanley Pau, College of Optical Sciences, Meinel Optical Sciences, Room 427
Email: spau@optics.arizona.edu
Office Hours: TBA

Schedule
Lecture, Friday 3:00pm to 4:15pm, Meinel Optical Sciences, Room 410

Teaching Assistant
Genny Allouche, Email: gallouche@optics.arizona.edu
Office Hours: TBA

Course Objectives
To teach students the basic concepts of computer programming and how scientific or engineering problems can be translated into working computer programs. Students will also be taught some elementary concepts of statistical analysis.

Upon successful completion of this course, each student should:
- be able to use MATLAB to perform complex scientific calculations, such as Fourier transform, integration, differential equation, matrix
- become familiar with rudimentary programming techniques
- be proficient with data handling and analysis, using a computer
- be able to apply numerical analysis to solve problems

Course Description
MATLAB is used as the vehicle for the computer programming assignments in numerical and symbolic computing. Basic concepts of computer programming and control structures will be discussed and practiced by writing and debugging computer programs that do numerical calculations and symbolic mathematics, that create graphics and figures, and that manipulate vectors and matrices.

The concepts will be illustrated with a variety of programming assignments involving examples from optics and other areas of science and engineering. Numerical techniques, including numerical differentiation and integration, solution of differential equations, data import and export, error analysis, and curve fitting, will be illustrated in the assignments.

Grading
no midterm or final
homework 70%
in-class quizzes 30%

Each assignment is worth 100 points, is due a week after it is assigned and is to be submitted in class. Assignments that are handed in late will be penalized 15 points per week.

Spring 2017
Textbooks and Software

Students are encouraged to purchase the student version of MATLAB and use it on their own computer. A version of MATLAB is available for downloading at https://softwarelicense.arizona.edu.

Class Notes – Opti 280 MatLab Tutorial, available at the University Bookstore

Supplements and additional materials are available at class website, which will be updated periodically during the semester: https://d2l.arizona.edu (use your NetID to login).

Course Outline

- Program statements, variables, operators, functions, and input/output
- Program structure, computer program debugging
- Vector variables, creating plots and graphs
- Relational operators, if…end structures, and for loops
- Switch structures and while loops
- Elementary statistical analysis and histograms
- Error propagation and statistical correlation
- Data import and export, and curve fitting
- Computer-aided symbolic algebra, integration, and differentiation
- Numerical differentiation, round-off errors and numerical precision
- Numerical integration
- Numerical solution of differential equations
- Numerical Fourier transform
- Graphics and images

Course policies

It is very important to attend all lecture recitation sessions, as what is discussed provides the necessary background for the weekly assignment. If you must be absent, it is your responsibility to obtain and review the information you missed. Periodic quizzes will be given to help you gauge your progress in learning the material. You should expect to have about 6 quizzes this semester. There is no make-up for quiz. If you missed the quiz, you get a zero.

Cell phones and pagers must be off or silent during lectures. If you must leave the room during lecture, please do so discreetly as not to disturb other people.

Spring 2017
Additional Information

Academic Integrity
According to the Arizona Code of Academic Integrity (http://deanofstudents.arizona.edu/policies-and-codes/code-academic-integrity), “Integrity is expected of every student in all academic work. The guiding principle of academic integrity is that a student’s submitted work must be the student’s own.” Unless otherwise noted by the instructor, work for all assignments in this course must be conducted independently by each student. CO-AUTHORED WORK OF ANY KIND IS UNACCEPTABLE. Misappropriation of exams before or after they are given will be considered academics misconduct.

Misconduct of any kind will be prosecuted and may result in any or all of the following:
* Reduction of grade
* Failing grade
* Referral to the Dean of Students for consideration of additional penalty, i.e. notation on a student’s transcript re. academic integrity violation, etc.

Students with Special Needs
It is the University’s goal that learning experiences be as accessible as possible. If you anticipate or experience physical or academic barriers based on disability or pregnancy, please let me know immediately so that we can discuss options. You are also welcome to contact Disability Resources (520-621-3268) to establish reasonable accommodations.

Threatening Behavior Policy
The University prohibits threats of physical harm to any member of the University community. Detail policy can be found in http://policy.arizona.edu/education-and-student-affairs/threatening-behavior-students.

Nondiscrimination and Anti-harrassment Policy
The University is committed to creating and maintaining an environment free of discrimination. The policy is described in http://policy.arizona.edu/human-resources/nondiscrimination-and-anti-harrassment-policy.

References
[1] Class notes are written by Prof. R. L. Shoemaker.
Computer Programming Workshop
OPTI 280, Spring 2017

Week 1: 13 Jan. 2017
Lecture 1: MATLAB, variables, functions, fprintf, Assignment 1

Week 2: 20 Jan. 2017
Lecture 2: Vectors, Plots & Graphs, Debug, Assignment 2

Week 3: 27 Jan. 2017
Lecture 3: Program control flow, IF END, FOR loops, Matrix, Assignment 3, Quiz 1

Week 4: 3 Feb. 2017
Lecture 4: Program development, SWITCH, WHILE, Assignment 4

Week 5: 10 Feb. 2017
Lecture 5: Matrix and Vectors, Assignment 5

Week 6: 17 Feb. 2017
Lecture 6: File I/O, Basic statistics, Assignment 6, Quiz 2

Week 7: 24 Feb. 2017
Lecture 7: More statistics, Probability distributions, Sorting, Assignment 7

Week 8: 3 Mar. 2017
Lecture 8: Propagation of errors, Curve fitting, Assignment 8, Quiz 3

Week 9: 10 Mar. 2017
Lecture 9: Symbolic math, Roots of linear & nonlinear equations, Assignment 9, Quiz 4

Week 10: 17 Mar. 2017
No lecture: Spring recess, Mar. 11 to Mar. 19
8 March - ALL REGISTRATION CHANGES REQUIRE not only the instructor's signature indicating permission on a Change of Schedule form, but also the Dean's signature. By policy, permission from the Dean to make a registration change at this time requires an extraordinary reason.

Week 11: 24 Mar. 2017
Lecture 10: MATLAB functions, Numerical differentiation & integration, Assignment 10

Week 12: 31 Mar. 2017
Lecture 11: Solutions of differential equations, Assignment 11, Quiz 5

Week 13: 7 April 2017
Lecture 12: Fourier transform I, Assignment 12

Spring 2017
Week 14: 14 April 2017
Lecture 13: Fourier transform II, Assignment 13, Quiz 6

Week 15: 21 April 2017
Lecture 14: Graphics and Images, Assignment 14 (Extra Credit), Course Evaluation

Week 17: 28 April 2017
Lecture 15: TBA

Last day of class, Wed., May, 3