Micro/Nanofabrication in optoelectronics (Opti-677)

Instructor: Mahmoud Fallahi

(Spring 2023)

This course is intended to give a broad understanding of various microfabrication techniques used in photonic and optoelectronic components. It covers epitaxial growth, lithography and processing steps of compound semiconductors frequently used in micro/nano-fabrication of optical and optoelectronic devices. Fabrication of waveguides and laser diodes and various integration techniques are also discussed. The course will be a combination of lecture and independent study followed by presentations on selected topics. The following topics are covered.

1. Introduction to Microfabrication

- Sources of Contamination
- Clean room and its operation

2. Lithography

- Photolithography
- Resist processing
- Exposure
- Lift-off process
- Electron Beam Lithography and nano-patterning

3. Epitaxial Growth

- MBE
- MOCVD
- CBE and ALE

4. Etching techniques

- Wet etching
- Dry etching: RIE, ICP
- What to choose

5. Contact Metallization

- Ohmic contact
- Schottky contacts
- Annealing

6. Optoelectronic Fabrication

- Waveguides
- Laser diodes
- OEIC
- Integration Techniques

7. Passivation and packaging

Micro/Nanofabrication in Optoelectronics

Opti-677, Spring 2023

Instructor: Mahmoud Fallahi, Room 640, OSC

(520) 621-8260

fallahi@optics.arizona.edu

Reference Books

Handbook of Compound Semiconductors: Holloway & McGuire

Semiconductor Lithography: Moreau

The UA Libraries provide free access to the following e-books for OPTI 677:

SEMICONDUCTOR LITHOGRAPHY:

http://ezproxy.library.arizona.edu/login?url=https://doi.org./10.1007/978-1-4613-0885-0

TECHNOLOGY OF QUANTUM DEVICES:

http://ezproxy.library.arizona.edu/login?url=http://dx.doi.org/10.1007/978-1-4419-1056-1

Course Grading

4 Topics presentations: Each 20%

Final Project Report: 20%