Theoretical and Computational Optical Physics Group

Date Published: November 24, 2014

The Theoretical and Computational Optical Physics Group led by Miroslav Kolesik explores the intersection of modern nonlinear optics, atomic and molecular physics, and strong-field phenomena. Research interests span statistical mechanics, Monte Carlo simulation, critical phenomena, nonequilibrium and driven systems, semiconductor laser simulation and optics; current activity concentrates on computational optics, particularly ultrashort optical pulse interactions.

Recent work includes first-principle methods to describe light-matter interactions in regimes that defy the tools and notions of traditional nonlinear optics and that scale from the quantum through the optical to the macroscopic. The challenge is in the integration of the microscopic medium description into space- and time-resolved, realistic simulations of experiments. Substantial research is being done in close collaboration with teams in the U.S. and Europe.

Optics Site Image

 Resonant-state landscape of a quantum system: It allows economic, yet accurate calculation of nonlinear optical properties.